Gagliardo–Nirenberg inequalities in logarithmic spaces
نویسندگان
چکیده
منابع مشابه
Logarithmic Harnack inequalities∗
Logarithmic Sobolev inequalities first arose in the analysis of elliptic differential operators in infinite dimensions. Many developments and applications can be found in several survey papers [1, 9, 12]. Recently, Diaconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for Markov chains. The lower bounds for log-Sobolev constants can be used to improve convergence bounds for ...
متن کاملInequalities for Generalized Logarithmic Means
For p ∈ R, the generalized logarithmic mean Lp of two positive numbers a and b is defined as Lp a, b a, for a b, LP a, b b 1 − a 1 / p 1 b − a 1/p , for a/ b, p / − 1, p / 0, LP a, b b − a / log b − loga , for a/ b, p −1, and LP a, b 1/e b/a 1/ b−a , for a/ b, p 0. In this paper, we prove that G a, b H a, b 2L−7/2 a, b , A a, b H a, b 2L−2 a, b , and L−5 a, b H a, b for all a, b > 0, and the co...
متن کاملInequalities Among Logarithmic-Mean Measures
In this paper we shall consider some famous means such as arithmetic, harmonic, geometric, logarithmic means, etc. Inequalities involving logarithmic mean with differences among other means are presented.
متن کاملOptimal inequalities for the power, harmonic and logarithmic means
For all $a,b>0$, the following two optimal inequalities are presented: $H^{alpha}(a,b)L^{1-alpha}(a,b)geq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain[frac{1}{4},1)$, and $ H^{alpha}(a,b)L^{1-alpha}(a,b)leq M_{frac{1-4alpha}{3}}(a,b)$ for $alphain(0,frac{3sqrt{5}-5}{40}]$. Here, $H(a,b)$, $L(a,b)$, and $M_p(a,b)$ denote the harmonic, logarithmic, and power means of order $p$ of two positive numbers...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2006
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm106-1-8